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Abstracts of Papers to Appear in Future Issues 

SPECTRAL METHODS FOR NONLINEAR PARABOLIC SYSTEMS. John Strain, Depart- 
ment of Mathematics and Lawrence Berkeley l_xlboratory, University of 
California, Berkeley, California 94720, U.S.A. 

Many physical problems are naturally formulated as nonlinear parabolic 
systems of partial differential equations in periodic geometry. In this paper, a 
simple, efficient, spectrally accurate numerical method for these problems is 
described and implemented. The method combines stiff extrapolation with fast 
solvers for elliptic systems. Theory and numerical results show that the method 
solves even difficult problems including phase field models and mean curva- 
ture flows. 

COMPLEX MAPPED MATRIX METHODS IN HYDRODYNAMIC STABILITY PROBLEMS. 

Andrew W. Gill and G. E. Sneddon, Department of Mathematics and 
Statistics, James Cook University, Townsville 4811, Australia. 

The ordinary differential equations governing the linear stability of inviscid 
flows contain singularities at real or complex points called critical latitudes, 
which degrade the accuracy of standard numerical schemes. However, the use 
of a complex mapping prior to the numerical attack offers some respite, This 
mapping shifts the computational domain to a contour in the complex plane 
to avoid the critical latitudes. Both quadratic and cubic complex maps are 
considered in some detail. An analytic result for choosing the optimum quadratic 
complex map in the case of a single critical latitude is presented. Numerical 
results are given for two test problems-and a barotropic vortex model. A 
comparison is made between methods with and without these mappings. The 
results show that the use of complex maps can lead to remarkably accurate solu- 
tions. 

SOME PRACTICAL EXPERIENCE WITH THE TIME INTEGRATION OF DISSIPATIVE EQUA- 
TIONS. BOSCO Garcia-Archilla, Departamento de Matemdtica Aplicada y 
Computaci6n, Universidad de Valladolid, Valladolid, Spain. 

Different methods for the numerical integration of evolution dissipative 
partial differential equations are tested with the Kuramoto-Sivashinsky equa- 
tion. Discretizations in space include Galerkin and nonlinear Galerkin methods. 

For integration in time three different codes are used, including standard stiff 
ODE methods. Numerical tests show that standard codes for stiff ODE render 
a gain of computing time of several orders of magnitude with respect to 
problem-tailored methods. 

A MULTISCALE WAVELET SOLVER WITH 0(11l COMPLEXITY. John R. Williams 
and Kevin Amaratunga, Intelligent Engineering Systems l.xtborato~T, 
Massachusetts hlstitute of Technology, Cambridge, Massachusetts 
02139, U.S.A. 

In this paper, we use the biorthogonal wavelets recently constructed by 
Dahlke and Weinreich to implement a highly efficient procedure for solving 
a certain class of one-dimensional problems, (O"lOx2)u = f, I ~ Z, I > 0. For 
these problems, the discrete biorthogonal wavelet transJbrm allows us to set 
up a system of wavelet-Galerkin equations in which the scales are uncoupled, 
so that a true multiscale solution procedure may be formulated. We prove that 
the resulting stiffness matrix is in fact an almost perfectly diagonal matrix (the 
original aim of the construction was to achieve a block diagonal structure) and 
we show that this leads to an algorithm whose cost is O(u). We also present 
numerical results which demonstrate that the multiscale biorthogonal wavelet 
algorithm is superior to the more conventional single scale orthogonal wavelet 
approach both in terms of speed and in terms of convergence. 

ON NONREFLECTING BOUNDARY CONDITIONS. Marcus J. Grote and Joseph B. 
Keller, Stanford University, Stal(ford, California 94305, U.S.A. 

Improvements are made in nonreflecting boundary conditions at artificial 
boundaries for use with the Helmholtz equation. First, it is shown how to 
remove the difficulties that arise when the exact DtN (Dirichlet-to-Neumann) 
condition is truncated for use in computation, by modifying the truncated 
condition. Second, the exact DtN boundary condition is derived for elliptic 
and spheroidal coordinates. Third, approximate local boundary conditions are 
derived for these coordinates. Fourth, the truncated DtN condition in elliptic 
and spheroidal coordinates is modified to remove difficulties. Fifth, a sequence 
of new and more accurate local boundary conditions is derived for polar 
coordinates in two dimensions. Numerical results are presented to demonstrate 
the usefulness of these improvements. 
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